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Background and motivation

Atomic layer deposition (ALD)
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Atomic Layer Deposition (ALD)

Angstrom (Å )-scaled controllability

• ALD process is based on Saturation processes

 => Wide process windows

 

 => Relatively long process time

 => low throughputs

 => Excess use of precursors and reactants

• If non-ideal ALD process is performed, then the thin 

film quality would be pretty different from what you 

expect (potentially not desirable) 

• ML for Autonomous ALD Process
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Atomic Layer Deposition (ALD)
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Background and motivation

Process optimization (Case of HfO2)
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Process Optimization for high-quality film & high-performance device

The deposition profile in ALD directly influences film quality 

and electrical performance

[1]

[1] S. Gieraltowska et al., Materials 16, 4077 (2023). [2] Y. W. Yoo et al., ACS Appl. Mater. Interfaces 6, 22474–22482 (2014).

[2]

Al doping 

concentration



Background and motivation

Emerging 3D structure

5

Complex Process Steps of Current ALD Technologies

Conventional

2D planar structure

More complex 3D structures

have been emerged

Monitoring 3D structures 

is even more complex to be predicted

Deeper understanding 

and analysis is necessary

Simply growing thin film 

on 2D planar structure
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Many ALD parameters must be optimized 

to achieve high-quality films and, 

ultimately, high performance device

In 3D structures, it is difficult to know what 

occurs deep inside the features, highlighting 

the need for deeper structural analysis and 

understanding.

Machine learning (ML) offers a powerful tool to interpret ALD behavior and 

extract insights from complex process data

Background and motivation

Machine learning (ML) for ALD
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In-situ ALD process

Economically & Efficiently 

unfeasible!

To achieve “self-feedback ML-driven ALD system,” 

the in-situ monitoring is helpful
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Our Approach

Proof-of-concepts for ML-driven ALD processes
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“Pipeline” framework for autonomous ALD tool
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“Pipeline” framework for autonomous ALD tool
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ML-Driven ALD Processes

Case studies of hafnium oxide growth on silicon substrate
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ML-Driven ALD Processes

ML-driven ALD process workflow
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Deep Neural Network (DNN)
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Deep Neural Network (DNN)
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Deep Neural Network (DNN)
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ML-Driven ALD Processes

Predictive work using ML
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Prediction accuracy

 
  

 

 

 

55

60

65

70

75

P
re

c
u
rs

o
r 

T
e

m
p

. 
[°

C
]

100 125 150 175 200 225 250
Deposition Temp. [°C]

100 125 150 175 200 225 250
Deposition Temp. [°C]

100 125 150 175 200 225 250
Deposition Temp. [°C]

Training/Test Set 1 Training/Test Set 2 Training/Test Set 3

55

60

65

70

75
P

re
c
u
rs

o
r 

T
e

m
p

. 
[°

C
]

55

60

65

70

75

P
re

c
u
rs

o
r 

T
e

m
p

. 
[°

C
]

0

20

40

60

80

100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 [

%
]

 
0

20

40

60

80

100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 [

%
]

 

0

20

40

60

80

100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 [

%
]

 Tox RI WER Tox RI WER Tox RI WER

1
0
0
%

9
2
%

9
9
.5

%

9
5
%

1
0
0
%

9
3
%

1
0
0
%

9
4
%

1
0
0
%

9
8
%

9
9
.1

%

9
3
%

1
0
0
%

9
5
%

1
0
0
%

9
6
%

1
0
0
%

9
3
%

Randomly Selected 

Set X-1

Randomly Selected

Set X-2

Prediction Range

Tox:  ~10 ±1.5 nm

RI:  ~ 2.15 ±0.08

WER: ~5.0 ±1.5 Å /min  

9-Locations in Each 

Wafer Split

 (Training by) »» (Test by)

 Set X-1 »» Set X-1

         (Training Accuracy)

 Set X-1 »» Set X-2

         (Test Accuracy)



ML-Driven ALD Processes

ALD prediction maps
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Prediction maps
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ALD prediction maps w/ 215 datapoints
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Prediction maps
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ALD prediction maps w/ 160 datapoints
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Prediction maps
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ML-Driven ALD Processes

ALD prediction maps w/ 100 datapoints
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Prediction maps
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ALD prediction maps
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Prediction maps
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The prediction map successfully captures the growth trend 

as a function of deposition and precursor temperatures
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ALD prediction maps
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Extended prediction maps 

(ML-based trained map w/ 100 datapoints)
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100 °C – 250 °C
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ALD prediction maps
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Extended prediction maps 

(ML-based trained map w/ 100 datapoints)
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Predicting thinner Tox 

with opposite trend
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ALD prediction maps
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Extended prediction maps 

(ML-based trained map w/ 100 datapoints)
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50 °C – 80 °C

Deposition Temperature:
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Precursor Temperature:

55 °C – 75 °C

Deposition Temperature:

100 °C – 250 °C

Predicting thinner Tox 

with opposite trend

Can precursor temperature of 50 °C 

generate enough base pressure 

and grow HfO2?
** Boiling point of TDMA-Hf is ~60 °C.
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ALD prediction maps
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ALD prediction maps
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Include 50 °C training data
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❑Machine learning (ML) can offer a powerful tool to interpret ALD behavior and extract 

insights from complex process data

✓ Many ALD parameters needed to be controlled for process optimization

✓ Deeper understanding for 3D structures

✓ “Pipeline research” on how we can apply machine learning to ALD process efficiently

❑ML-driven ALD processes using DNN systems

✓ Apply ML to the ALD process through the use of process parameters as inputs and prediction of film 

properties as outputs

✓ Assess the required number of training datapoints

✓ Demonstrate the advantages of machine learning, particularly in enabling broader exploration of the process 

parameter space

✓ Including poor or failed results in training data is critical for improving the accuracy of ML predictions



Perspectives
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❑ In-operando Auto-Reprogramming Process based on ML Predictions

✓ In-operando measurements big-data sets enable to predict the film qualities/properties using ML

✓ Training the tool that can modify process parameters to obtain the expected target results during 

the process

✓ Eventually, add 3D process and characteristics capabilities for advanced semiconductor processing

❑ Even Further Predictions on Device Electrical/Reliability Characteristics

❑ Autonomous ALD process to enhance manufacturing capabilities and the 

thin film qualities
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Thank you

Questions?
Email to
Jiyoung.Kim@utdallas.edu

mailto:Jiyoung.Kim@utdallas.edu
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