Machine Learning for Accelerating Atomic Layer Deposition Process Optimization

Minjong Lee, Doo San Kim, Dushyant M. Narayan, and Jiyoung Kim*

¹The University of Texas at Dallas, TX, USA * jiyoung.kim@utdallas.edu

Atomic layer deposition (ALD)

Atomic Layer Deposition (ALD)

Angstrom (Å)-scaled controllability

- ALD process is based on Saturation processes
 => Wide process windows
 - => Relatively long process time
 - => low throughputs
 - => Excess use of precursors and reactants
- If non-ideal ALD process is performed, then the thin film quality would be pretty different from what you expect (potentially not desirable)
- ML for Autonomous ALD Process

Background and motivation

Atomic layer deposition (ALD)

Atomic Layer Deposition (ALD) Precursor Pulse/Purge Substrate Reactant Pulse/Purge Substrate

Angstrom (Å)-scaled controllability

Background and motivation

Process optimization (Case of HfO₂)

Process Optimization for high-quality film & high-performance device

The deposition profile in ALD directly influences film quality and electrical performance

Complex Process Steps of Current ALD Technologies

Background and motivation

Machine learning (ML) for ALD

Many ALD parameters must be optimized to achieve high-quality films and, ultimately, high performance device

In **3D structures**, it is **difficult to know what occurs deep inside** the features, highlighting the need for deeper structural analysis and understanding.

Machine learning (ML) offers a powerful tool to interpret ALD behavior and extract insights from complex process data

In-situ ALD process

To achieve "self-feedback ML-driven ALD system," the *in-situ* monitoring is helpful

"Pipeline" framework for autonomous ALD tool

Self-feedback ML-driven ALD system, **by using the conventional process sensors** (e.g., pressure, temp.)

"Pipeline" framework for autonomous ALD tool

Self-feedback ML-driven ALD system, **by using the conventional process sensors** (e.g., pressure, temp.)

Case studies of hafnium oxide growth on silicon substrate

Process variations and film properties of interest

Three ALD parameters were controlled: Deposition temp., precursor temp., sample location

Case studies of hafnium oxide growth on silicon substrate

Process variations and film properties of interest

Three ALD parameters were controlled: Deposition temp., precursor temp., sample location

ML-driven ALD process workflow

Deep Neural Network (DNN)

ML-driven ALD process workflow

Deep Neural Network (DNN)

ML-driven ALD process workflow

Deep Neural Network (DNN)

ML-driven ALD process workflow

Predictive work using ML

Prediction accuracy

ALD prediction maps w/ 215 datapoints

ALD prediction maps w/ 160 datapoints

ALD prediction maps w/ 100 datapoints

Prediction maps

The prediction map successfully captures the growth trend as a function of deposition and precursor temperatures

ALD prediction maps

Extended prediction maps (ML-based trained map w/ 100 datapoints) Precursor Temperature:

55 °C – 75 °C **Deposition Temperature:**

100 °C – 250 °C

Precursor Temperature: 50 °C – 80 °C **Deposition Temperature:** 75 °C – 275 °C

$$(x, y) = (0, 7.5)$$

ALD prediction maps

ALD prediction maps

Extended prediction maps (ML-based trained map w/ 100 datapoints

Precursor Temperature: 55 °C – 75 °C Deposition Temperature: 100 °C – 250 °C

Precursor Temperature: 50 °C – 80 °C **Deposition Temperature:**

75 °C – 275 °C

$$(x, y) = (0, 7.5)$$

0 datapoints)
(x, y) = (0, 10.5)

$$T_{ox}$$

$$RI$$

$$WER$$

$$WER$$

$$T_{ox}$$

$$RI$$

$$WER$$

$$T_{ox}$$

$$RI$$

$$WER$$

$$T_{ox}$$

$$T_{ox}$$

$$RI$$

$$T_{ox}$$

$$RI$$

$$T_{ox}$$

$$RI$$

$$T_{ox}$$

$$T_{ox}$$

$$RI$$

$$T_{ox}$$

$$T_{ox}$$

$$RI$$

$$T_{ox}$$

Include 50 °C training data

Include 50 °C training data

□ Machine learning (ML) can offer a powerful tool to interpret ALD behavior and extract

insights from complex process data

- ✓ Many ALD parameters needed to be controlled for process optimization
- ✓ Deeper understanding for 3D structures
- ✓ "Pipeline research" on how we can apply machine learning to ALD process efficiently

□ ML-driven ALD processes using DNN systems

- ✓ Apply ML to the ALD process through the use of process parameters as inputs and prediction of film properties as outputs
- \checkmark Assess the required number of training datapoints
- Demonstrate the advantages of machine learning, particularly in enabling broader exploration of the process parameter space
- ✓ Including poor or failed results in training data is critical for improving the accuracy of ML predictions

□ *In-operando* Auto-Reprogramming Process based on ML Predictions

- ✓ In-operando measurements big-data sets enable to predict the film qualities/properties using ML
- Training the tool that can modify process parameters to obtain the expected target results *during* the process
- ✓ Eventually, add 3D process and characteristics capabilities for advanced semiconductor processing
- Even Further Predictions on Device Electrical/Reliability Characteristics
- Autonomous ALD process to enhance manufacturing capabilities and the thin film qualities

Thank you

Questions? Email to Jiyoung.Kim@utdallas.edu